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ABSTRACT

In this note, we derive the asymptotic distribution of
logarithm of the likelihood ratio statistic for testing the
hypothesis that the number of signals 1s equal to q against
the alternative that it is equal to k (specified) for a special
case. This distribution is not chi-square. The above statistic
also arises (see Wax and Kailath (1985)) in studying consistency
property of MDL and AIC criteria for detectlion of the number of
signals.
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1. INTRODUCTION

In the area of signal processing, a model that is often used

involves modeling the observation (complex) vector as & llnear
combination of the elementslof the signal vector and vector
of white noise. Under this model, the (unknown) number of
signals is related to the multiplicity of the smallest eigen-
value of the covariance matrix of the observation vector.
Recently, Wax and Kailath (1985) used Akaike's AIC criterion
and Schwartz-Rlssanen's MDL criterion for determination of
the number of signals and stated that the AIC criterion 1s
not consistent whereas the MDL criterion is consistent.

Parts of the proofs of the above statements are based upon

the assumption that the asymptotic distribution of -2 log Ltk
1s chi-square where Ltk denotes the likelihood ratio test
statistic for testing Hy against H, where t and k(k > t) are
specified. In this note, we derive the asymptotic distribu-
tion of the above test statlistic for trivariate case and point
out that it is not chi-square. We will also derive analogous
result when the underlying distribution is real multivariate

normal.
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2. SOME CRITERIA FOR DETECTION OF SIGNALS

Consider the model
x(t) = As(t) + n(t) (2.1)

where A = [A(gi)”"’A(!h)]’ s(t) = (slft),...,sq(t))', 8, (t) is
complex waveform associated with i-th signal, A(si) is a complex
vector which depends upon the unknown vector associated with i-th
signal, n(t) 1s noise vector. Also, g(t) and n(t) are distributed

independently as complex multivariate normal with E(g(t)) = Q,

E(a(t)) = @ E(g(t)E(E)') = ¥and E(p(t)B(E)') = 0°I , where o° is

unknown. Here x'"and'i respectively denote the transpose and con-

Jugate of y. The number of signals q is unknown. Also, X(ty)...,
§(tn) is a sample from a complex multivariate normal population
with mean vector Q and covariance matrix Z%. Now, let Mt denote
the t-th model which states that the number of signals is t.

Wax and Kailath (1985) proposed using the AIC criterion and MDL
criterion for the selection of the number of signals. According to

the AIC criterion, we select the model for whicp
AIC(t) = -2 log L, + v(t,p) (2.3)

is minimum where v(t,p) = t(2p - t) + 1. According to the MDL

criterion, we select the model for which

MDL(t) = - log L, + v(t,p)log n (2.4)
2

is minimum. Now, let Ht denote the hypothesis that the number of
signals 1s equal to t. The logarithm of the likelihood ratio
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test statistic for testing Hr against Hy for specified values
of r and k (r < k) 1is known to be log L, - log L, where

K p p

“ log L, = - n{ Z 1log Ei - log( Z 21/(13 - t))}. (2.5)
), i=t+1 i-t‘f'l

Xf Wax and Kailath (1985) pointed out that the MDL criterion is

K consistent whereas the AIC criterion is not consistent. 1In the

proofs of the above statements, they have incorrectly assumed

g; that -2 log L. 1s distributed asymptotically as chi-square.
i, Now let 9 denote the parametric space. Under Hy, the -
§
? supremum of the logarithm of the likelihood functicn, L(g),
% might be reached at a boundary point of Q and not in any-
)
'. . - = =
i P
A\ = T 4£./(p-t). So the conditions for -2 log L g to be
b P g=t+1 d r
e
R distributed as chi-square asymptotically are not satisfied. 1In
b Section 3, we derive the asymptotic distribution of -2 log er
} for the speclal case when p = 3., Analogous result is also de-
L)
»
ﬁ rived when x(t) is distributed as real multivariate normal with
W
ot mean vector Q and covariance matrix Zé.
o
o
N

o
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3. DISTRIBUTIONS OF THE LRT STATISTICS
FOR DETECTION OF NUMBER OF SIGNALS

In this section, we will derive the asymptotic distribution
of -2 log er when p =3, r = 0 and k = 1. The following defini-
tion of complex Gaussian matrix is needed in the sequel.

Let A = (ajﬂ) =R + 1S, where A: pxp is a Hermitian random
matrix, R = (rJz) and 8§ = (st). Assume s, = 0, and the distinct
elements of R and the upper-diagonal elements of S are independent
real normal variables. Also, we assume that the variances of the
off-diagonal elements of R and S are equal to 1 and the variances
of the diagonal elements of R are equal to 2. Then, A =R + 1S
is known (see Krishnaiah (1976)) to be the central or noncentral
complex Gaussian matrix accordingly as E(A) = O or E(A) # O.

Now, let XyseeesZg be distributed independently as complex
trivariate normal with mean vector Q and covariance matrix I3 where
I3 is an identity matrix of order 3x3. Also, let 21 > 5213 23 be

the roots of the equation.

15‘-_\ =,
'33=1£J£J - zIBI = 0. (3.1)

Rewrite this equation as

n
Im(%ﬁlidzj - I3) - JE(L - 1)) = 0. (3.2)

By the central 1limit theorem, we have

n
LR 2 5gE) - T3) = £(k3) (3.3)
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as N = e where A3 is 3x3 central complex Gaussian matrix. So the
asymptotic distribution of J?H(zl-l,la-l,ﬂ3-l) is the same as
distribution of the elgenvalues TI2T 2T of Ag. It 1s well
known (see Wigner (1965)) that the Joint density of (71,72,73) is

3
_ _ 2 _ 2
h(tl,ta,t3) = C{1<,jI<Im<3(tJ t ) Jexp( JE‘lti/u), ]
- = (3.4)

> ~-o,

© >t 2t > t3

where
C = 2-7ﬂ.3/2.

Since 1im(£,-1) = O a.s., we can use Taylor's expansion and
n-e
get from (2.5),
- 2[Sup L(8) - Sup L(§)]
Gego

-X3)
~€~1 (3.5)

3 3
= [n(£-1)2 + L“;(:Ea(zi-l))2 - %(le(zi-l))g](1+o(1)) a.s.

Here, ek denotes the parameter space under Hk.

Write
W = - 2[Sup L(8) - Sup L(8)].
n ~ -~
8<8) 88, ,
Then ﬁ
2 1 2 2
Wy =g Tyt 7(To+73)" - %(Tl+72+'r3) , (3.6)
1 1 1
as n - e Now, letn, =— 1., N = =— T.,N, =— T.. Then
? A
2 2 1l 2
Wop =mp %("2+”3) = g(nytng#ng)” =W, (3.7)
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where the jolnt density of (nl,na,n3) is

g(ﬂlsﬂ29n3)
5/2_-3/2 (3.9)
=2 %n exp(- 1+n2+n3) 1<J<m<3(nd nm)
If we write
2 1
n —_ 0 — Y
1 1 1
M |= [-= = = Y,
2 B B B 2
1 1 1
n - = = Y
3 B B S 3 ’
then n; - ng J;l fYa’"e =2 Y.,
“1 - 1A"3 % Yy + — Tas ‘
and
2 1 2 _
v =12 - E(n2+n3)] - 2, (3.9)
Thus the joint density of (Yi,Yé,Y ) is
£(¥1s¥ps¥3) = 2~7/2q 3/2(3 v3)2y3exp(- g(y1+y§+y§)l
(3.10)

«Byl>YQ>O:'°<y3<.°

Hence, the density of Y1 is

(3yl"Y2) YQexP[ g(yl+y2)]dy2, yl > 0,
(3.11)

: JSy
fl( yl) = 2-3"-1[0
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BNy
igﬁ So the density of Y? is

_ J3u ,
a(u) = 3 ‘fl/afl(ﬁ) = 24"-1“-1/23-11/? (3\1-:»'2‘)'23'24"5'2/ 24y, u > o.

° (3.12)

Now, let
X 2.
K - . i
Ie(x) = [ y*e sy, ¥ =0,1,2,3.
)
el Then we have
.t

_ 2k-1_x7/2

.. Jk(x) = + 'Z(K'I)Jk_l(x) (3.13)

$
_,.‘-t‘.
3&», for k = 1,2,3. Thus,

¥

|

LA
o res

-
-

2/2

J3(x) (-x5-5x3-15x)e'x + 157 ,(x),

2
Jz(x) = (-Jc3-3x)e"x /2 + 39,(x), (3.14)

-

-
feC i
A ‘-‘ ':’ﬂ‘: o
]
\J
]
o

-

-x2/2

2 s’

Jq(x) + Jo(x).

) So, we have
a(u) = gis w2 V21 (/3W) - 6ul, (VIE) + 9u2T (/36)]

l;.!\! = I%.__ u—l/2e-u/2[ ( (311)3/2-15613)8-3“'/2

L

+ (9u® -18u+15)J_(V34)] (3.15)

- = 1o (3/35-15/3)e2% 4 o

T

1_1‘1/ 2e'u[2(9u2-18u+15)J°(m) ,

(u > 0).
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where ;
3 o :
I (V) = fo e~V /2qy. (3.16)

From (3.7), (3.9) and (3.15), it follows that the asymptotic dis-

tribution of W = - 2[Sup L(3) - Sup L(8)] is not chi-square.
n o, 86,

In view of the above counter example, the strong consistency
of the MDL criterion does not follow from the argument of Wax and
Kailath (1985). But, it follows from the results given in a com-
panion paper by Zhao, Krishnaiah and Bai (1985).

Now we suppose that xl,...,xn are pxl i1.1.d. real normal
random vectors with Ex, = O and Ex;xi = 2. > 0. We point out that,

the asymptotic distribution of -2[Sup L(8) - Sup L(68)] here also

- X3%) 8¢co
is not chi-square. ~ ~ ™

Now let R = (er): pxp be a symmetric random matrix. We

assume that [er; J<m=1,...,p} are independent normal variables

- g

with means zero, Var(rJJ) = 1 and var(rjﬁ) = 1/2 for all ,
J < £. Then R is known to be distributed as (real) central or 5

noncentral Gaussian matrix accordingly as E(R) = O or not.

Let B > 2 > £, be the elgenvalues of "lejié and

3 Rya1™
TN 2T be the eigenvalues of 3x3 central (real) Gaussian

matrix. Then, using the same argument as before, the joint dis-

tribution of Jg(£1-1,22—1,£3-1) tends to that of (71,72,73).

A A

It is well known (e.g., see Anderson (1984)) that the joint den- !

sity of (71,72,73) is glven by )

lc}; !y itltﬁl_\<v-‘y‘ . .
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_ 1 ! 2 _
h(tl’tZ’t3) = Eexp[ = 21t3]1<i<,j€(ti tj)
(3.17)
(o > ty >ty > t3 > -w),
~ 2 1 _ 1 _ 1 .
Let Y, = ;E T - :E§T2+T3), Y, = 35(72—73), Y3 = ;E(Tl+72+73).
Then the Joint density of (Yl’Y ’Y3) is given by
£(¥1s9ps¥3) = 2-15(3y§-y§)y2exp[- %(y1+y2+y3)],
(3.18) |
ngl >y, >0, o< ¥y < = 1
Using the same argument, we have
£
W= W= Y. (3.19)
By (3.18), the density of Y, is
1 371 2 2 '
£,(yy) = =— 3y1-¥5)v,exp{- 5(yJ+y;)ldy.
1(¥71) mfo (3y1-¥2)72 3(y3+v5)}ay, 3.0

- L(sRe)e T 2y s,
™ Jom

Thus, the density of W is

%u-l/éfl(Jﬁ) = 1 (3u1/2_2u-l/2)e-u/2 + 1 u-l/Qe-2u,
N
(3.21)

0O < u< e,

SRRSO RO S AIINTNDRY |
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bt From (3.19) and (3.21), it follows that the asymptotic dis-

tribution of W, = -2[Sup L(8) - Sup L(§)] is not chi-square
K] €

distribution. ~ =1 ~ R
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